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Abstroci

On the basis of an axiomatization of classical thermodynamics given ia a previous paper,
the existence of Camot engines is established, and used to prove rigorously the principle
of increase of entropy and Clausius® inequality for compound systems.

1. Introduction

Inan cartier paper (Boyling, 1972) hereafter referred to as I, an axiomatic
formulation of <cizssiral thermodynamics” was proposed, which was
sssentinlly aqigorous wersion of that of Carathéodory (Carathéodory, 1909).
Omn the basis of the postolates laid dows in I, we shall here prove the
existence of Carnot engines, and heoce deduce the principle of increase of
entropy for compound systems in full generality (e, without the restric-
tinns imposed in I}, ’

Cermnot engines are constructed in Section 2, the procedure being to stari
with_simple-Carpot engines capable of executing small Carnot cycles
petween pairs of almost equal temperatures, and then to build up out of
these compound Carnot engines of arbitrary power working between
arbitrary pairs of temperatures.

In Section 3 the principle of increase of entropy for compound systems
is proved with the aid of two further assumptions about the relation of

_adiabatic accessibility. An indirect method of proof is used, in which itis
assumed that the compound sysiem M cap undergo an adiabatic transition
from a state x to a state y, which is accompanied by a decrease in entropy.
A corctradiction is established by imagining /7 to pass from x to yvia a
sequence of small quasi-static transitions, during each of which 2 particular
simaple component of M can be in thermal equilibrium with some thermo-
meter (I). The resulting transition of the preduct system consisting of A/
and all of these thennometers is adiabatically impossible, but can never-
theless be achieved by making M perform the postulated adiabatic transition
from x to y while the thermometers undergo a transition which is shown
to be adiabatically possible by considering an associated transition in
which they are thermally coupled with a number of Carnot engines.
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Ta Section 4 the Pt mcxpie of increase of entropy is used io pioves z form
of Clausius’ ineguality.
- The definitions and notations of | ave employed throughout.

2, The Existence of Carnot Engines

The existence of eatropy and absolute temperature as differentiable
functions was established in I on the basis of postulates 1V of that paper.
Explicitly, if M is a simple system, whose {gquilibrium) states form a -
connected C> differentiable manifold (also denoted by the symbol A3,
then the entropy §,; and absolute temperature Ty, are O functions on the
= manifold A4,

If the simple system 31 is of the special type known in T as a thermometer,
then postulate Vie} of I implies that every point (i.e. state) x of M may be
surrounded by 5 stendard coordinate z-s.éﬁ,hhnurhood V, i.e. an open
rectanguiar coordinate neighbourhood on which 5, and 7, are two of

* the lacal coordinates. It is therefore clear that in this case &f can be taken
round 2 small Carnot cycle within ¥ by keeping the coordinates other
then 5y and Ty fixed and making it describe a rectangle in the {5, 7,
plane; However, our postulates do not guarantes that 3 can perform a
Carnot cyi:TE‘vTrﬁﬁ%giéhihmais have widely separated temperatures. To
obtain a Carnot engine to work between an arbitrary pair of temperatures,
it is necessary to consider a compourid system consisting of a wnmf *battery”
of infinitesimal Carnot engines of the above fvpe.

“Jet T' and T" be any two absolute temperatores satisfving 0 < 77 < T”,
Given a point TF of the closed interval [77, 77}, there exists a thermometer

- M*, asiate x¥ of Af* such that Ty.(x*) = T * and a standard neighbour-

hood ¥* of x* in M*. The open Intervals /¥ = T,.(V*) for varying T%

constitnie an open covering of the tapogchcm space {77,771 Since

{77, 7"} is compact, it can be covered by 2 finite number of these intervals,

and we may assume without loss of generality {by eliminating some of'the
intervals if necessary} that this finite covering consists of a finite sequence
of intervals I, %, 7.%,..., L* satisfying

T’ e I,*, T el®

Trtel*nIf, forj=1,2,..,n—1
" where .
T=T*<T*< <Th ,<T*=T"

Let M, be the thermometer corresponding to the interval I*, ¥V, the’
cerresponding standard neighbourhcod, and let A4S be any positive
number smaller than the Iengm of the smaliest of the open intervals S{V))
forj=1,..., n, where S is the entropy of 3,. Then clearly A, can p»rform
quasx—statlcany a small Carnot cycle between the temperatures 7,7, and
Tj in which the entropy difference between the two adiabatics is 4S.

ATy Ty A3

Al that is necessary is to sead M, round "iw re'“tane x,y,;z;w; in the
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5,7 }plme. keeping the other sia.raa,rd focal coordinates on ¥V, all ﬁmd
where the states x;, y,, z; and wy camspmé to the points {;. e
(5% + A5, T7%), (5, + 45, 7)) and (§,%,7; ;) of the (5,,T)) plane. By
suitably combining these cyeles for the M, we can now make the product
system M = My x My 2~ x M, {ie. the system consisting of the M,
separated by adinbatic partitions) perform a Carnot cvele between the
temperatures 77 and 77
© The Carnot cycle for the compound system 3 begins and ends with the
state (x,,X,,...,%,) and proceeds quasi-statically as follows:
. isothermal
(xb X2y -yxu) —— (xh X35 o vep Kgsis 3&?
sdiabatic f adiabatic
. leothermal
(Wls Wapenos W,} A I (21, Wasenes W.)
The two isotherma! tramsitions eack involve only one of the subsystems
A, In one the subsystern M, which we cafl the head of the Camnot engine
M, proceeds isothermally from the state x, o the stae ¥, 3t temperature
T, absorbing beat T AS in the process. In the pther the subgyvsiem 37
which we call the foot, proceeds isothermally from the stats z; o the state
wy at temperature 1, giving oni heay 7745 in the process. The adiabatic
transition from (wy, ..., w,} to {xy,...,%,) is the transition in which each M,
passes quasi-statically and adiabatically from wy to x; in the obvicus way.
The other adiabatic transition is more complicated, and consists of i
following sequence of quasi-static adiabatic transitions:

z (xly .. ‘s‘xnvla yn) - (xb cees Xp-ty zﬁ}

(?1v~~»sxx*z~ys~2r ) ":/(xn wvs Xpe2s n——}ewp[)

rd

' /
(x}’yzs Waseanoen ] Wa) - (x.bzzv Wageansn wﬂ)
()713 wif Wiseenon ] wm} - (Z,h Wa, Wiy oo o sy W,,)

The horizontal arrows hete represent adiabatic transitions in which only
one 6f the A takes part. The obligue arrows represent transifions in which
two of the Af; exchang~ heat quasi-statically and isothermally, while the
- rest of the M_, remain unchanged. These trensitions are also adiabatic
sincs they proceed at a constant entropy value for the simple system which
is the sum (1) of the two M involved. This is also physically obvious, since
the transitions involve no heat exchange between Af and the outside world.

Thus we have built up a cycle for M consisting of two isothermal transi-
tions at temperatures 77 and 77 separated by two adiabatic transitions,
'.e a Camot cyclé between the temperatures T’ and T " In the course of

: R el
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and performs an equivalent amount of useful external work, We rcan
imczesze the power of the engine by 2 factor & by replacing each A, by the
sum of M with itself k times, 1.e. the simple system consisting of k copies of
A separated by diathermic parfitions. For this has the effect of multiplying
AS by a factor k. Sinve the original 45 can be 25 small as we please, this
means in effect that we can achieve any desired value of 45, i.e. constyuet
a Carnot engine of arbitrary power operating between the temperatures
77 and T7.

Since the whole cycle is guasi-static and therefore reversible, we can
put it into reverse and so make M act as a refrigerator, in which the work
{77~ T .45 is used to extract heat 77 AS from a body ai temperature 77
and supply heat 77 45 to 2 body at the higher temperature 77,

Ft is perhaps unnecessary o 244 that the Camot cycle constructed above
is by no means unique, noris the engine M that performos if.

3. The Principle of Increase of Ertrepy

Before we procead any further, we must mtroduce two further assumyp-
tions about the relation € of adiabatic accessibility:

(i) Let Mf and ¥ be any two thermodynamic systems, x and y any two
states of A, and z any state of &, Then (x.2} € (3,2} for the product
system M x Nifand onl;!fx<;} for M.

oy Let M, M,,..., M, be mutually compatible simpis systems {ie.
simple systems capable of coexisting at the same temperatore), X;
and y, states of M, suchthat x; ~ x; ~ =~ xeand ¥, ~ ¥y~ ~ ¥,
{where ~ denotzs the equality of temperature, as in I}, Then
(Xggee ) ${Fr-- 3%} for the product system T15.; A4, {in which
the Af; are separated by adiabatic partitions) if and only if
{(X3sensXn) € {Py5e- Vo) Tor the sum 37 M, (in which the M, are
separated by diathermic pastitions). '

The “if” parts of both of these assumptions were already made in I. The
‘only if” part of (i) seems physically reasonable, and haz already been nsed
by Cooper (1967). The ‘only if” part of (i} amounts to aliowing the temporary
insertion of internal adiabatic partitions in the course of an adiabatic
transition, provided the insertion and subsequent removal occur whils the
remperature of the system is uniform. Since the insertion and removal
processes are purely “mechanical’, this is evidently in accordance with the
usual interpretation of the word, ‘adiabatic’ {Buchdahl, 1966).

We now define a new relation < on the states of an arbitrary thermo-
dynamic systern A in terms of the relation < as follows:

x<y ifasdenlyif x<y and y<x

Ciearly < is transitive. For suppose x <y and y < z. Then x< z by
e con

the
transifivity nf <. {‘}1 the other hand z € x. For suppose on th tra r} ,

LA msaviaea Y aRh a5 Rails CLORRIE & S A 2O UMD L ik 2L
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that z € x. Then, since x € 3, we should have 2 < y, contradicting y < 2.
Thosz <z

 We now deduce, as an immediate sonsequence of assumption (), the
following lemma and its corollary:

Lemmua 1
Let M and N be any two thermodynamic systems, x and y any two

— states of M, andzaay state of ¥. Then (x,2) < (y,2) for M x N if and oaly
ifx<ypfor M. '

Eorolicry -
iet &4,,..., M, be thermodyuarmic systems, x; and ¥; sfates of A, satisfy-
ing x; <y (i=1,...,n). Then the states x = (x;,....%.) and y = (Fg,o..s V)
of the product system M= [ 7., M, satisfyx < ».
The corollary follows from the lemma via the sequence of inequalities:

{xﬁw..x R § 2 T T § I N NS PR
< {)’n «xss Vais X,} < ()’1.9 - "E}{ﬁ}
We likewise deduce from assumpiion (1) the following lemina

Lemma 2

Let A, be a simple system, M,,..., 3, thermometers such that My,
M., 4 M, are muteally compatible, x, and y, states of M, such that
Xy~ Xy~ o~ x, and yy ~y2 ~ e me Yo Then (xy,.. %) < (31,300 for
TT0.: M, if and enly if 35, Si(x) < 255 Si{»), where S; is the entropy
of M,.

To prove this, one has merely tc observe that the ertropy of the simple
system >%.1 M, is an empirical entropy {Buchdahl, 1966} for that system.

It is evident that lemma 2 would still held if assumption (i) were 1aken
to apply only to the special case where M,,.. ., A7, are ali thermemeiers (so
that >%_, M, is a simple gystem). However, there seems to be no good
physical reason for weakening {and thereby complicating) assumprion {i) -
in this way.

Wearenowina position to prove the principle of increase of entropy in
the following form:

Theorem

.Let M be a compound system, ie. a system of the form A = 1, M,
where the Af, zre all simple. Then, if x and y are states of M satisfying
X < y, the eatropies of these two states must satisfy S(x) < S(»).

Proof
Suppov- on the contrary that x < < 'y but that S(¥) < $(x), i.e. that
3 Siyd <3 St .}
i

20
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where S, is the entropy of M, and x, and y, are the states of M, corre-
- sponding to the states x and y of M. ”j“nsn

-
A,S“S »-3x
=Sy) — Six)

We shail prove the theargm by showing that the above suppasxtm& leads
to a contradiction,

First we observe that, as M, is connected, there exists (sce e.g. Hocking &
Young, 1961, Theorem 3-4, p. 108} a finits family of open sets ¥, and
points p,, in Mysuchthat x, € Vi, 1€ Vipp Py € ¥, NV i (G= 1,00,
m;-- 1), where within each ¥, the absolute temperature 77 of A, lies in
the temperatore range of a standard neighbourhond B, of some thermo-
meter M. ) :

Now, by hypothesis, }

where 1 o
= 5i{(p:) — Sdpy, 1) (F=1...m)
Do =% Py = Vi
We can therefore choose quantities 45y, satisfying
2 45,;=0
£t .
and B
48+ AS;; <0 foralliandj
e.g. we could 1ake T
) z’jS;j:-‘AS11+m_IEAS;;
. if
where
' = oy
H
"By replacing M, by the sum of several copies of itself, we can widen the
standard neighbourhood W), in the entropy direction to zny desired
extent. We may therefore assume without loss of generality that A,
possesses three states xy;, y,, and 2z, in B/, satislying
Tifxip) = T:J(ZU) =1 s(Px,‘::—x)
Ty =Tdo) .
.. Sif(pi) = Sefz. ) = 8,00 ) + 4S5y,
Thus
Xy~ P, j~1s Y13~ Py
Spi) + Sy = Sdpy, 1)+ Sl ) + 45, + 454,
<SP, 30 F Siyiz)

and
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Thcmfsm by lemma 2, (pr) <{p; s ,,xf 3} for the i:ystem M, My,
and hﬁnﬁ& by lemma 1,

(P ¥rss o 2 Fiss X pete e qug) <{p, Fots Ftas o s Pa, jor1s Xigs oo o5 Ky

for M, x I]; My, Since this holds for j=1,..., m, we may use the
transitivity of the relation < to deduce that

f?h}'n?« 4 a‘)’mﬁ < (x& xils .. *sxm,)

for Myx 11, M, 1t then follows by the corollary to lemma 1 that -
(3.5) < (x,%) for M x M, where M = [],, M, and % and 7 are the states
of M for which M;, is in the state x;; and y,, respectively (for all { and j).

Weshallnow obtain a contradiction, by showingthatin fact (x, £} < {y, § 8
Since x < y for M by hypothesis, it will suffice to show that £ < 7 for #7.

To do 1his we introduce for each 7 and j a Carnot :engmﬂ M, capable of
executing a Carnot cycie between the mg@mﬁxm Tyixy;) and some fived
temperature Ty less than 28 of the T {x,;), the entropy difference between
the adiabatics of the cycle being precisely 43};. Explicitly, we assume that
the cycle proceeds as follows:

W' _Jlsothermal at temperature Tyglxey) .
. “heat Tyy(x; 45" fost .
sdisbatic } . : : }ad:abauc
T 4{~ " E &Y tamg ‘;:rg*. TC! N '," M
T TpdS'yysbeorted 4o

{with an obvious change of wording in the event that 45, is negative).
We now prove that (%,z)< (3,2 for the system i x M, wbere
M'=T],, M{; and 2’ is the state of M" for which Mu is in the state z;,.
Firstly, (%,2)<{Z,+") (in an obvious notation), since the product {or
sum) of M, with the head of M, has the same est:o py in these two states,
Physically, an adiabatic transition between these v states may be realised
by allowing transfer of heat between sach M, and the head of the corre-
sponding My, (the other simple compoenents of M|, remaining unchanged).
Secondly, (Z,w'} < (£, x"), since wy; s xi; for each M/,
~ Thirdly, (Z,x") < (&,»", since x" £y’ for Af". To see this, note that only
the feet of the M;, cHange state in the transition from x” to 37, that these
are all at temperature To in both states, and that the net entropy dxf” ference
between the two states is 2 ; 457, = 0. Thus the transition can i
adiabatically for the sum, and therefore also ‘(by assumption ¢
- product of the feet, and hence for the whole system M. Physically, we
could arrange that the Carnot engines performed their 7'= T, isothermals
simultaneously with their feet in thermal contact, their individual rates
being mu!ually adjusted in such a way that no heat ever passed between
M’ and the outside world. This is possible since the net absorpfmf: of heat

in the transition is 7o 3,; 45, =0. 7 7
Fourthlv {7 v’) < (v 7'\ QI“CE Z; < ¥;; Tor Mii and }‘;:j "<\Zx:j far A

Vazwaiiys 4y
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By the transitivity of <, it therefore follows that (¥,2Y {52 for

M x M’ We deduce at puce from assumption () that £ < F for ﬂ?’ and
hence that (x, %) < (y,5) for M x A, wmmd.cvnﬁ (P <, %)
Thus the assumption that S(p) < S(x) has fed to a contradiction, and -

~we can only conclude that §(x} < §(3), as in ihﬁ theoremn,

4. Clausius™ Inequality

Consider a cyclic fransition of a2 compound system A in which it begins
2nd ends in a certain definite state x. The transition is not necessarily
guasi-stafic, so the state of M will not in geseral be well-defined at intes-
mediate stages. However, we assume that the transition may be para-
metrised by a real parameter f running from € at the start 1o 1 2t the finish,
in such a way that the rate of heat intake 40/d! is well-defined and con-
- timoous for 0 €7 <7 {except possibly for a finite nurober of exceptional
values of 7).

We further assume that this heat ic af any given stage heing absorbed
from or given out to some simple component of an '*m"“”’" m"’zmund
system M,, which executes in the process a quasi-siatic {but in general
non-cyclic) transition, represenied by a piece-wise smooth curve v, in
" .M. This ass.umption is physically reasonable if M, consists of a number of
heat reservoirs whose thermal capacity greatly exceeds-that of M. The
transition of the product system M x M may then be too rapid for M tc
be always in thermodynamic squilibrium but pavertheless slow enough for
the equilibrium of the large heat reservoirs of My mever te be seriously
disturbed. '

Since M exchanges all.of its heat with A, the combined transition of
M x M, will be adiabatic, and will therefore ;’esﬂt 1 2 net increase in

tfap\, (in the wide sense). As the entropy of A is the same at start and
finish, the entropy &, of A7, must therefore have increased in the course of
the transition, i.e. 45, > 0.

Since the combined transition of M x M, is adiabatic, we must have

at (almost) any instant, where T, is the absolute temperature of the simple
component of M with which M is exchanging heat at that instant. Thus

ldo__ds,
T1 a'r dt
and
: d
—lf—Q-dt=~ASi<0
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Hiis impmuni to realise that 7 } is nof the insi'ﬂmanﬂeus ig:mpvamr@ of
(ﬁx!high s not ie !isﬂ‘gﬁf’lx well-defivied for Q< f« , GVED when Af iz

anp A!eﬁ bui that of ﬂxf: simpls systern with wbzch :1 xg mstaﬁtanmmiy
exehanging heat.

We also remark that the inequality does not automatically reduce o an
equality when the cyclic fronsition of 3 is cgtza&@iahc and therefore
{according fo our assumptions: raversible. In this case the transition is
represented by a (piece-wise sooth) closed curve v in M, and we may write
dQ{dt = J(7) almost everywhere, where i is the heat form (I) of M, so that
Ciausius’ inequality takes the form

§i§8
k4

It is now tempting to conclude that the left-hand side must vanish, since
the same incquality may be applied o the reverse of the transition v, This
argument fails because the reversal of y is in general accem;zan?ed by a
change @ the fonction 7y, which is not & function of state of M bui a
function depending oa the path 7 and only defined on y. -

As an example, consider an isomairic (Rurhdahl, 1966) quasi-static cvelic
wransition y(t) of a simple systern &, in which iis absoluie temperature
rises monotorically from 7 t6 T as # increases from € to 4, and then falls
monatonically from T back to 7' as 1 increases from 1 to 1. For the
transition y, wemust have T, > Tior 0 < £ < 4 (when 3/ is ¢"\s{§rbmz heat}
but 7, « ¥ for § <1< 1 (when M is losing heat), where T is the instan-
taneous absoluts temperature of 3. On the other haad, for the reverse
vansition 7 defined by ${t)=p{1~1), wemust have T, > T for0<1<$
{corresponding to the part of pon which 3 < f < 1) and Ty < Tfor% <t<1
(currsspcnd.nc 10 the part of vy on which § < 7 < ). Thus 7,(2) is not the
5aTie xi_uu.u(‘u{ as Llli,:_‘_L

. §_, D O
and there is no contradiction in havmg both integrals negative.
Thus Clausius’ inequality cannot in general be reversed, even when
transition of 3f is quasi-static, This is because, zlthough the as secxated
transition of the combined system M x M, is theh quasi-staticand therefore

reversible, its reverse is not in general adiabaric (since it may involve a
decrease in entropy).
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